福西です。
前半は、『算数が好きになる本』(芹沢光雄、講談社)のp123-127を読みました。
内容は、樹形図です。そこから確率の話をしました。
後半の時間は「論理パズル」を1題しました。
ギリシア神話の英雄アイアス(ア)、イドメネウス(イ)、オデュッセウス(オ)の3人の住む島は、それぞれ異なり、それぞれがサラミス島か、クレタ島か、イタカ島に住んでいます。
二人は次のように述べています。どちらも、もしサラミス島に住む者ならば真実を言い、そうでないならばうそを言います。
イドメネウス: 「オデュッセウスか? あいつならクレタ島かサラミス島に住んでいるぞ」
オデュッセウス:「アイアスなら、イタカ島に住んでいるぞ」さて、三人の住む島は?
論理的に考えるための第一歩は、『もし』という言葉でパターン分けすることです。パターンは起こりえる「すべて」について、穴がないようにします。
もし、イドメネウス(以下「イ」)がクレタの場合
もし、イがサラミスの場合
もし、イがイタカの場合
こうすれば、パターン分けが完成します。