『かず』(1~2年/3~4年)『中学数学A』クラス便り(2016年6月)

「山びこ通信」2016年度春学期号より下記の記事を転載致します。

『かず』(1~2年/3~4年)『中学数学A』

担当 吉川弘晃

 今年度のかずクラスは、小学1~2年の方は4人、3~4年の方は3人の受講生でスタートです。昨年度までと同様、前半は自分の頭を使って課題に取組み、後半は数を使ったゲームを友達と一緒に行うという方針で授業を進めています。
 小学1~2年の方の課題では、迷路とクイズの2つを1週毎に交互に行っています。迷路については「行き止まりを先に探すこと」を心がけてもらっています。1枚目の簡単な方が出来た生徒さんには2枚目の難しい方に進んでもらう、というシステムですがまだ2枚目クリアは出ておりません。頑張っていきたいところです。クイズの方は、4人にそれぞれ違う問題を出して、最低15分間、自分の頭で考えてもらいます。図を描いたり、表にしたり、定規で測ったり、どんな方法でもとにかく答えに一歩でも近づけるよう講師はヒントを出していきます。
 小学3~4年の方の課題では、かけ算や割り算の文章題を解いてもらっています。この時期になると九九だけでなく2桁以上の筆算も増えていきますが、多少複雑な計算でも正確にできるようになると共に、それを具体的な事例で考えてみるという訓練もしっかりと行います。
また、計算や問題の解き方を頭で理解することも重要ですが、算数は一つの技術である以上、何度も反復練習を行い、同じような問題が出た場合に自分自身で解けるようにならねばなりません。よって今後は「おさらい」の時間の設けていこうと考えています。
 中学数学は、2年生になると計算が複雑になるのは勿論、論証作業がますます重要になってきます。答えがたまたま合っていた、特定の条件だから解答できた、では通用しないということです。算数は戦前の教育課程では「算術」といいましたが、要は計算の「術」であり、具体的な数値や条件に対して正しい答えを導くことが第一の目標であるといってよいでしょう。これに対し、数学は「学」、すなわち、前提となる数値や条件から自分自身で一歩一歩、筋道を立てて考える、という科学的態度が求められるのです。例えば、「連続する3つの偶数の和が6の倍数になることを証明せよ」という問題は、2+4+6 = 12 という1つの具体例を出せば分かった気になりますが、逆に言えば1つの例を示したにすぎません。どうやって文字nを置くか、nは整数にするか自然数にするか、そもそも自然数とは何か。この授業では問題演習が中心となりますが、これまで通り、「道具」の使い方については丁寧な解説を心がけています。